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Abstract: Disaccharide 4 was designed as a structurally simplified, potential mimic of 
sialyl Lewis X (1). 4 was prepared utilizing Schmidt’s trichloroacetimidate methodology 
in 10 linear steps from methyl galactoside 5. 4 exhibited activity in an E-selectin binding 
assay at concentrations 40 to 45fold higher than that observed for monomeric sialyl Lewis 
X. 

Introduction 

Sialyl Lewis X (sLex. 1) has been suggested to play a role in cell adhesion through interactions 

with its putative receptor, E-selectin. 1 Cell adhesion plays a pivotal role in several disease states, 

including arthritis, asthma, and cancer. 2 For example, the recruitment of neutrophils to the site of 

injured tissue, an important component of a variety of inflammatory processes, is thought to possibly 

be mediated by the interaction of E-selectin with sLex.1 Thus, blocking the sLex / E-selectin 

interaction is an attractive strategy for treatment of neutrophil mediated inflammatory diseases such as 

arthritis. We are interested in designing simplified sLex analogs which retain the ability to block 

neutrophil rolling along the endothelium, but which have smaller molecular weights and are more 

synthetically accessible; this paper describes the design and synthesis of one such mimic, disaccharide 

4. 

Feizi et al. have shown that sLex retains its activity as an antagonist when the sialic acid residue 

is removed if an acidic group is retained at C-3 of the galactose (e.g. sulfate 2)? Other workers 
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have shown that the galactose and fucose moieties are critical, but that the N-acetylglucosamiue 

tolerates some variation (e.g. reductive opening of the pyranoside or replacement with a simple glucose 

residue).4 These observations led us to design disaccharide mimic 4, in which a 3-substituted galactose 

and a fucose are linked through a simple two carbon tether (our initial synthetic target was the analog 

of 4 in which C-l of the fucose moiety is the axial, or a anomer; an unexpected p-selective 

glycosylation forced us to alter the stereochemistry at this position). Following the initiation of this 

project, Allanson and co-workers reported the preparation of disaccharide mimic 3, in which they 

linked the sialic acid and fucose residues through a five carbon tether.5 

Results and Discussion 

Preparation of the differentially 3-substituted galactose moiety is shown in Scheme 1.6 

Selective allylation of the 3-hydroxyl of methyl galactoside was achieved via the stannylene acetal, 

providing 6 in 87% yield.7 The remaining hydroxyls were masked as the corresponding benzyl ethers 

(84% yield), and the methyl glycoside was removed via acid hydrolysis (62% yield) to provide 3-allyl- 

2,4,6-tribenzyl galactose (7). Schmidt’s trichloroacetimidate glycosidation methodology* had worked 

well in our hands in ealier applications, leading us to utilize it in the present study. Thus, treatment of 

7 with tichloroacetonitrile, K2CO3, and NaH in CH2C12 provided trichloroacetimidate 8, as an 8:l 

mixture of axial / equatorial acetimidate anomers (100% yield).9 

Scheme 1 

OH Is OMD 

5 6 7 a 

Key: (a) Bu2Sn0, PhH; (b) ally1 bromide, BwNI, PhH (87% overall); (c) NaH, PhCH2Br. DMF (84%); 

(d) 1N HCI, aq AcOH, 100 OC (62%) (e) C13CCN. K2C03, NaH, CH2C12 (100%). 

Preparation of the fucose portion of the target began with 2,3,4-tribenzyl fucose, which was 

prepared by the published synthesis. tu Treatment with trichloroacetonitrile, KzCO3, and NaH in 

CH$& provided the corresponding trichloroacetimidate as a 4: 1 mixture of axial / equatorial anomers 

(Scheme 2). This material was then coupled with the t-butyldiphenylsilyl ether of ethylene glycol 

(prepared from TBDPSCl, imidazole and ethylene glycol in DMP in 86% yield), using 10 mol% triflic 

acid in toluene at -20 cC (syringe pump addition of the TfOH in toluene over 70 mitt).‘* Based on a 

literature precedent with the same trichloroacetimidate.9 we had anticipated that the glycosylation 

would proceed with net retention of configuration to provide the axial glycosylation product. Thus, we 

were surprised to find the major coupling product (4:l ratio) to be the equatorial anomer 10. (This 

assignment was based on the Ht-H2 coupling constants: the major product exhibited a 7.7 Hz coupling, 

whereas the minor, axial anomer displayed a 3.9 Hz coupling). This result demonstrates the sensitivity 

of these glycosylations to solvent and catalyst; whereas the earlier glycosylationg proceeded primarily 
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Key: (a) Cl3CCN. K2CO3, NaH, CH2C12 (100%); (b) HOCH2CH2OSitBuPh2 (1.5 eq), TfOH (10 

mol%), PhCH3, -20 oC (65%); (c) BIuNF, THF (62%): (d) 8 (1.6 eq), TfOH (10 mol%), PhCH3, -20 Oc 

(76%); (e) 0~04 (5 mol%), N-methylmorpholineN-oxide (2.0 eq), aq THF (61%); Q NaIO4 (1.1 eq), 

then AgNO3 (2.5 e@, KOH (5.0 es), aq THF (84% overall); (8) 40 psi H2, pd(OH)2 / C, E&OH, then 

LiOH, MeOH. aq THF. 

(9:l) with retention of stereochemistry (consistent with an SHl type mechanism), our coupling appears 

to be proceeding with inversion of configuration (consistent with an SN2 type mechanism ). One 

explanation for this dichotomy is the difference in solvent polarity (toluene in the present study, vs. 

Et20 in the earlier work). It should be noted that in Myers’ studies on the catalytic TfOH-mediated 

Schmidt glycosidation, he also observed net inversion of stereochemistry (albeit with a 2-axidoglucosyl 

rather than a fucosyl trichloroacetimidate).tl 

Removal of the silyl ether was effected by treatment with BtqNP in THP, providing alcohol 11 

in 62% yield (deprotection with NaOH in EtOHt2 was also investigated, but after 3 days had proceeded 

in only 20% yield, with 5560% recovered starting material). The final glycosidation was also 

mediated using Schmidt’s trichloroacetimidate methodology; coupling of alcohol 11 with 1.6 

equivalents of acetimidate 8 in toluene with catalytic triflic acid proceeded in 76% yield. The product 

was found to be a 3:2 mixture of equatorial / axial anomers at the C-l of galactose, which could not be 

separated by chromatography.13 Disaccharide 12 was thus carried on as a mixture of galactose 

anomers.t‘t Oxidative cleavage of the terminal olefin could be realized by exposure to catalytic RuC13 

and NaI04 in CCht-CH$N-H2Ot5 in low yield (<20%), or by a more efficient three-step procedure: 

diiydroxylation with 0~04 / NM0 (61% yield) followed by Na104 cleavage to the aldehyde and 

immediate oxidation to the acid with AgN03 / KOH (84% yield).16 Hydrogenolysis of the benzyl 

ethers was effected by treatment with Pearlman’s catalyst in EtOH under 40 psi H;? to provide the 

desired disaccharide 4 as a mixture of free acid and ethyl ester; this material was then saponified 

(LiOH, MeOH, aq THP) to provide the lithium carboxylate (4) as a viscous, glassy foam. 

This material was tested at concentrations of 0.050 to 100 mM in a static assay which measured 

the Ca++ mediated binding of HI-60 cells to E-selectin adsorbed onto a multi-well plate. 4 was found 

to inhibit calcium-dependent binding at 40 to 45-fold higher concentrations than monomeric sialyl 

Lewis X; this is approximately two-fold less active than compound 3 (which displayed inhibition at 25 

to 30-fold higher concentrations than sialyl Lewis X). 5 The reduced potency of 4 (as well as 3) 
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suggests that the increased conformational flexibility arising from the tether connecting the two 

pyranose rings leads to an increase in entropic penalties for binding. The relatively weak inhibition 

displayed by disaccharides 3 and 4 is also consistent with the hypothesis that multiple sLeX epitopes 

must be presented for efficient binding to E-selectin. 
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